Dataset¶
Module providing dataset loaders from various source formats.
Functions
|
Load COCO dataset (2017 version). |
|
Load PASCAL-VOC dataset (version 2012). |
|
Load VGG Image Annotator (VIA) dataset. |
|
Load YOLO dataset. |
|
Helper function to generate image mask from a list of polygons. |
|
Helper function to parse text file and extract class names. |
Details
- ikomia.dnn.dataset.load_coco_dataset(path: str, image_folder: str, task: str = 'instance_segmentation', output_folder: str = '') dict ¶
Load COCO dataset (2017 version). COCO dataset consists in a JSON file describing annotations and an image folder.
- Parameters:
path (str) – path to the JSON annotation file
image_folder (str) – path to the image folder
task (str) – task of the dataset, must be one of the following “detection”, “instance_segmentation”, “semantic_segmentation” or “keypoints”
output_folder (str) – path to output folder only for semantic segmentation
- Returns:
Ikomia dataset structure. See
IkDatasetIO
.- Return type:
dict
- ikomia.dnn.dataset.load_pascalvoc_dataset(annotation_folder: str, img_folder: str, instance_seg_folder: str, class_path: str) dict ¶
Load PASCAL-VOC dataset (version 2012). PASCAL-VOC dataset is structured in different folders:
image folder
annotation folder: text files (same name as corresponding image files)
instance segmentation folder: image file (same name as corresponding image files)
- Parameters:
annotation_folder (str) – path to annotations folder
img_folder (str) – path to images folder
instance_seg_folder – path to segmentation masks folder
class_path – path to text file containing class names
- Returns:
Ikomia dataset structure. See
IkDatasetIO
.- Return type:
dict
- ikomia.dnn.dataset.load_via_dataset(path: str) dict ¶
Load VGG Image Annotator (VIA) dataset. VIA dataset is a single JSON file containing all information.
- Parameters:
path (str) – path to the JSON file
- Returns:
Ikomia dataset structure. See
IkDatasetIO
.- Return type:
dict
- ikomia.dnn.dataset.load_yolo_dataset(folder_path: str, class_path: str) dict ¶
Load YOLO dataset. YOLO dataset consists of a list of text files with the same name as the corresponding image. Each line represent a bounding box with the following information:
class number x_center y_center width height
Note that center coordinates and box size are relative to the image size.
- Parameters:
folder_path (str) – path to the dataset folder (image + text files)
class_path (str) – path the text file containing all class names
- Returns:
Ikomia dataset structure. See
IkDatasetIO
.- Return type:
dict
- ikomia.dnn.dataset.polygon_to_mask(polygons: list, width: int, height: int) ndarray ¶
Helper function to generate image mask from a list of polygons. The function assumes that each polygon is a list of xy coordinates.
- Parameters:
polygons – list of polygons
width (int) – width of the future mask
height (int) – height of the future mask
- Returns:
image mask
- Return type:
numpy array
- ikomia.dnn.dataset.read_class_names(txt_path: str) list ¶
Helper function to parse text file and extract class names. The text file must be structured so that one line = one class name.
- Parameters:
txt_path (str) – path to the text file
- Returns:
list of class names
- Return type:
str[]