CInstanceSegmentationIO¶
- class ikomia.dataprocess.pydataprocess.CInstanceSegmentationIO¶
Define input or output managing common information extracted by instance segmentation task. Such task are able to automatically detect objects and their shapes in image. It gets class label, confidence, bounding box and mask for each one. For each object, information is stored in a
CInstanceSegmentation
instance. Among others, algorithms like MaskRCNN, Yolact, SparseInst are instance segmentation tasks.Import
from ikomia.dataprocess import CInstanceSegmentationIO
Methods
__init__
(arg1)__init__( (object)self) -> None :
add_object
(self, id, type, class_index, ...)Add segmented instance to the input/output.
get_object_count
(self)Get the number of segmented instances.
get_object
(self, index)Get segmented instance information at a given index.
get_objects
(self)Get all segmented instances.
get_merge_mask
(self)Get an image array where all segmented masks are merged into a single grayscale mask: one graylevel value for each class.
init
(self, task_name, ref_image_index, ...)Initialisation step to set associated task (name), reference image and mask size.
Overridden methods
clear_data
(self)See
clear_data()
.is_data_available
(self)See
is_data_available()
.load
(self, path)Load instance segmentation input/output for JSON file.
save
(self, path)Save instance segmentation input/output to JSON file.
to_json
(self)Return input/output data in JSON formatted string (compact mode and image encoded as JPEG).
from_json
(self, json_str)Set input/output data from JSON formatted string.
Inherited methods
copy_static_data
(self, io)Copy the static data from the given input or ouput.
get_unit_element_count
(self)Get the number of unit elements in terms of processing scheme.
Attributes
auto_save
Auto-save status
data_type
I/O data type
dim_count
Number of dimensions
description
Custom description to explain input/output type and use
displayable
Displayable status (Ikomia Studio)
name
I/O name
source_file_path
Path to the source file used as workflow input (if any)
Details
- __init__((object)arg1) None ¶
- __init__( (object)self) -> None :
Default constructor
- __init__( (object)arg1, (CInstanceSegmentationIO)arg2) -> None :
Copy constructor
- add_object((CInstanceSegmentationIO)self, (int)id, (int)type, (int)class_index, (str)label, (float)confidence, (float)box_x, (float)box_y, (float)box_width, (float)box_height, (object)mask, (object)color) None : ¶
Add segmented instance to the input/output.
- Parameters:
id (int) – instance identifier
type (int) – segmentation instance type (0:THING - 1:STUFF)
classIndex (int) – index of the associated class
label (str) – class label
confidence (double) – prediction confidence
boxX (double) – left coordinate of object bounding box
boxY (double) – top coordinate of object bounding box
boxWidth (double) – width of object bounding box
boxHeight (double) – height of object bounding box
mask (numpy array) – binary mask
color (int list - rgba) – display color
- clear_data((CInstanceSegmentationIO)self) None : ¶
See
clear_data()
.clear_data( (CInstanceSegmentationIO)self) -> None
- get_object_count((CInstanceSegmentationIO)self) int : ¶
Get the number of segmented instances.
- Returns:
object count
- Return type:
int
- get_object((CInstanceSegmentationIO)self, (int)index) CInstanceSegmentation : ¶
Get segmented instance information at a given index.
- Parameters:
index (int) – object index
- Returns:
segmented instance information
- Return type:
- get_objects((CInstanceSegmentationIO)self) object : ¶
Get all segmented instances.
- Returns:
segmented instances
- Return type:
- get_merge_mask((CInstanceSegmentationIO)self) object : ¶
Get an image array where all segmented masks are merged into a single grayscale mask: one graylevel value for each class. This image output is typically used for display, Ikomia Studio uses it to create an overlay color mask on top of the reference image.
- Returns:
grayscale mask
- Return type:
2D numpy array (uint8)
- init((CInstanceSegmentationIO)self, (str)task_name, (int)ref_image_index, (int)width, (int)heigh) None : ¶
Initialisation step to set associated task (name), reference image and mask size. The reference image is the task output index where the graphics information (label, box) will be displayed as an overlay layer.
- Parameters:
taskName (str) – task that contains the output
refImageIndex (int) – zero-based index of the output containing the reference image
width (int) – mask width
height (int) – mask height
- is_data_available((CInstanceSegmentationIO)self) bool : ¶
See
is_data_available()
.is_data_available( (CInstanceSegmentationIO)self) -> bool
- load((CInstanceSegmentationIO)self, (str)path) None : ¶
Load instance segmentation input/output for JSON file.
Args:
path (str): path to JSON file
load( (CInstanceSegmentationIO)self, (str)path) -> None
- save((CInstanceSegmentationIO)self, (str)path) None : ¶
Save instance segmentation input/output to JSON file.
Args:
path (str): path to JSON file
save( (CInstanceSegmentationIO)self, (str)path) -> None
- to_json((CInstanceSegmentationIO)self) str : ¶
- Return input/output data in JSON formatted string (compact mode and image encoded as JPEG).
Returns:
string: JSON formatted string
to_json( (CInstanceSegmentationIO)self) -> str
- to_json( (CInstanceSegmentationIO)self, (object)options) -> str :
Return input/output data in JSON formatted string. JSON format options can be set, possible values are:
[‘json_format’, ‘compact’] (default)
[‘json_format’, ‘indented’]
[‘image_format’, ‘jpg’](for the mask - default)
[‘image_format’, ‘png’]
Args:
list of str: format-specific options encoded as pairs [option_name, option_value]
Returns:
string: JSON formatted string
to_json( (CInstanceSegmentationIO)self, (object)options) -> str
- from_json((CInstanceSegmentationIO)self, (str)json_str) None : ¶
Set input/output data from JSON formatted string.
Args:
str: data as JSON formatted string
from_json( (CInstanceSegmentationIO)self, (str)json_str) -> None