CObjectDetectionIO¶
- class ikomia.dataprocess.pydataprocess.CObjectDetectionIO¶
Define input or output managing common information extracted by object detection task. Such task are able to automatically detect objects in image and get class label, confidence and bounding box for each one. For each object, information are stored in a
CObjectDetection
instance. Among others, algorithms like FasterRCNN, RetinaNet and YOLO series are object detection tasks.Import
from ikomia.dataprocess import CObjectDetectionIO
Methods
__init__
(arg1)__init__( (object)self) -> None :
add_object
(self, id, label, confidence, ...)Add detected object with bounding box.
get_object_count
(self)Get the number of detected objects.
get_object
(self, index)Get object information at a given index.
get_objects
(self)Get all detected objects.
init
(self, task_name, ref_image_index)Initialisation step to set associated task (name) and reference image.
Overridden methods
clear_data
(self)See
clear_data()
.is_data_available
(self)See
is_data_available()
.load
(self, path)Load object detection input/output from JSON file.
save
(self, path)Save object detection input/output to JSON file.
to_json
(self)Return input/output data in JSON formatted string (compact mode).
from_json
(self, json_str)Set input/output data from JSON formatted string.
Inherited methods
copy_static_data
(self, io)Copy the static data from the given input or ouput.
get_unit_element_count
(self)Get the number of unit elements in terms of processing scheme.
Attributes
auto_save
Auto-save status
data_type
I/O data type
dim_count
Number of dimensions
description
Custom description to explain input/output type and use
displayable
Displayable status (Ikomia Studio)
name
I/O name
source_file_path
Path to the source file used as workflow input (if any)
Details
- __init__((object)arg1) None ¶
- __init__( (object)self) -> None :
Default constructor
- __init__( (object)arg1, (CObjectDetectionIO)arg2) -> None :
Copy constructor
- add_object((CObjectDetectionIO)self, (int)id, (str)label, (float)confidence, (float)box_x, (float)box_y, (float)box_width, (float)box_height, (object)color) None : ¶
Add detected object with bounding box.
Args:
id (int): object identifier
label (str): class label
confidence (double): prediction confidence
box_x (double): left coordinate of object bounding box
box_y (double): top coordinate of object bounding box
box_width (double): width of object bounding box
box_height (double): height of object bounding box
color (int list - rgba): display color
- add_object( (CObjectDetectionIO)self, (int)id, (str)label, (float)confidence, (float)cx, (float)cy, (float)width, (float)height, (float)angle, (object)color) -> None :
Add detected object with oriented bounding box.
Args:
id (int): object identifier
label (str): class label
confidence (double): prediction confidence
cx (double): x-coordinate of object bounding box center
cy (double): y-coordinate of object bounding box center
width (double): width of object bounding box
height (double): height of object bounding box
angle (double): angle w.r.t horizontal axis of object bounding box
color (int list - rgba): display color
- clear_data((CObjectDetectionIO)self) None : ¶
See
clear_data()
.clear_data( (CObjectDetectionIO)self) -> None
- get_object_count((CObjectDetectionIO)self) int : ¶
Get the number of detected objects.
- Returns:
object count
- Return type:
int
- get_object((CObjectDetectionIO)self, (int)index) CObjectDetection : ¶
Get object information at a given index.
- Parameters:
index (int) – object index
- Returns:
object information instance
- Return type:
- get_objects((CObjectDetectionIO)self) object : ¶
Get all detected objects.
- Returns:
detected objets
- Return type:
CObjectDetection
list
- init((CObjectDetectionIO)self, (str)task_name, (int)ref_image_index) None : ¶
Initialisation step to set associated task (name) and reference image. The reference image is the task output index where the graphics information (label, box) will be displayed as an overlay layer.
- Parameters:
task_name (str) – task that contains the output
ref_image_index (int) – zero-based index of the output containing the reference image
- is_data_available((CObjectDetectionIO)self) bool : ¶
See
is_data_available()
.is_data_available( (CObjectDetectionIO)self) -> bool
- load((CObjectDetectionIO)self, (str)path) None : ¶
Load object detection input/output from JSON file.
Args:
path (str): path to JSON file
load( (CObjectDetectionIO)self, (str)path) -> None
- save((CObjectDetectionIO)self, (str)path) None : ¶
Save object detection input/output to JSON file.
Args:
path (str): path to JSON file
save( (CObjectDetectionIO)self, (str)path) -> None
- to_json((CObjectDetectionIO)self) str : ¶
Return input/output data in JSON formatted string (compact mode).
Returns:
string: JSON formatted string
to_json( (CObjectDetectionIO)self) -> str
- to_json( (CObjectDetectionIO)self, (object)options) -> str :
Return input/output data in JSON formatted string. JSON format options can be set, possible values are:
[‘json_format’, ‘compact’] (default)
[‘json_format’, ‘indented’]
Args:
list of str: format-specific options encoded as pairs [option_name, option_value]
Returns:
string: JSON formatted string
to_json( (CObjectDetectionIO)self, (object)options) -> str
- from_json((CObjectDetectionIO)self, (str)json_str) None : ¶
Set input/output data from JSON formatted string.
Args:
str: data as JSON formatted string
from_json( (CObjectDetectionIO)self, (str)json_str) -> None