CClassificationTask¶
- class ikomia.dataprocess.pydataprocess.CClassificationTask¶
Base class for classification task in Computer Vision. It defines a task with the following properties:
Inputs:
image (
CImageIO
)graphics (
CGraphicsInput
)
Outputs:
image IO (
CImageIO
): by default source image is forwarded.object detection IO (
CObjectDetectionIO
): filled if input graphics items are passed. In this case, classification is computed for each individual object.graphics output (
CGraphicsOutput
): text item with top-1 class if classification is computed on whole image.data output (
CDataStringIO
): sorted list of class scores if classification is computed on whole image.
Derived from
C2dImageTask
.Import
from ikomia.dataprocess import CClassificationTask
Methods
__init__
(arg1)__init__( (object)self) -> None :
add_object
(self, graphics_item, class_index, ...)Add classification result for individual object.
get_input_objects
(self)Get input graphics items on which classification can be computed individually.
get_names
(self)Get class names.
get_objects_results
(self)Get classification results when applied on individual objects (input graphics items).
get_object_sub_image
(self, item)Get ROI image for the given graphics item.
get_image_with_graphics
(self)Get visualization image where all extracted information are embedded (graphics items).
get_whole_image_results
(self)Get classification results when applied on whole image (no input graphics items given).
Check whether input graphics items are given for individual classification.
read_class_names
(self, path)Populate class names from the given text file (one line per class).
set_colors
(self, colors)Set colors associated with class names.
set_names
(self, names)Set class names.
set_whole_image_results
(self, names, confidences)Set whole image classification results.
emit_add_sub_progress_steps
(self, count)emit_output_changed
(self)emit_step_progress
(self)See
emit_step_progress()
.Overridden methods
end_task_run
(self)See
end_task_run()
.Inherited methods
add_input
(self, input)Add new input to the task.
add_output
(self, output)Add new output to the task.
apply_graphics_mask
(self, origin, processed, ...)Apply the mask generated from graphics to the result image so that only masked areas seems to be processed.
apply_graphics_mask_to_binary
(self, origin, ...)Apply the mask generated from graphics to the binary source image.
begin_task_run
(self)See
begin_task_run()
.create_input_graphics_mask
(self, index, ...)Generate a binary mask image from the task graphics input at the specified index.
create_graphics_mask
(self, width, height, ...)Generate a binary mask image from the given graphics input object.
execute_actions
(self, action)Method called when a specific action is requested from the associated widget (see
emit_send_process_action()
).forward_input_image
(self, input_index, ...)Forward input image at position input_index to output at position output_index.
get_elapsed_time
(self)Get the time of the last execution in milliseconds.
get_graphics_mask
(self, index)Get the binary mask generated from graphics input at position index.
get_input
(self, index)Get input at position index.
get_input_count
(self)Get the number of inputs.
get_input_data_type
(self, index)Get input data type at position index.
get_inputs
(self)Get the whole list of inputs.
get_output
(self, index)Get output at position index.
get_output_count
(self)Get the number of outputs.
get_output_data_type
(self, index)Get output data type at position index.
get_outputs
(self)Get the whole list of outputs.
get_parameters
(self)Get values of task parameters.
get_progress_steps
(self)See
get_progress_steps()
.global_input_changed
(self, is_new_sequence)graphics_changed
(self)See
graphics_changed()
.is_graphics_changed_listening
(self)Check whether the task is listening to graphics changed event.
is_mask_available
(self, index)Check whether a binary mask from graphics input is available at position index.
parameters_modified
(self)Notify that the task parameters have changed.
remove_input
(self, index)Remove input at the given position.
run
(self)See
run()
.set_action_flag
(self, action, is_enable)Enable or disable the given action.
set_active
(self, is_active)See
set_active()
.set_input
(self, input, index)Set input at position index with the given one.
set_input_data_type
(self, data_type, index)Set the data type for the input at position index.
set_inputs
(self, inputs)Set the whole list of inputs with the given one.
set_output
(self, output, index)Set output at position index with the given one.
set_output_color_map
(self, index, ...)Bind a display color map to an image output.
set_output_data_type
(self, data_type, index)Set the data type for the output at position index.
set_outputs
(self, outputs)Set the whole list of outputs with the given one.
set_parameters
(self, values)Set values of task parameters.
stop
(self)See
stop()
.update_static_outputs
(self)Determine output data type automatically from input data types.
Attributes
name
Task name (must be unique)
type
Main purpose or data type on which the task is dedicated to.
Details
- __init__((object)arg1) None ¶
- __init__( (object)self) -> None :
Default constructor
- __init__( (object)self, (str)name) -> None :
Construct CClassificationTask object with the given name.
Args:
name (str): task name, must be unique
- add_object((CClassificationTask)self, (CGraphicsItem)graphics_item, (int)class_index, (float)confidence) None : ¶
Add classification result for individual object. See
get_input_objects()
andget_object_sub_image()
for more information.- Parameters:
graphics_item (
CGraphicsItem
based object)class_index (int) – index is used to retrieve class name
confidence (float) – confidence score of top-1 class
- get_input_objects((CClassificationTask)self) object : ¶
Get input graphics items on which classification can be computed individually. One can iterate over this list to compute classification for each object. Use
get_object_sub_image()
to retieve object ROI image andadd_object()
to store classification result.- Returns:
graphics items
- Return type:
CGraphicsItem
based objects
- get_names((CClassificationTask)self) object : ¶
Get class names. Call
read_class_names()
to populate names from text file.- Returns:
class names
- Return type:
str list
- get_objects_results((CClassificationTask)self) CObjectDetectionIO : ¶
Get classification results when applied on individual objects (input graphics items). Results are given as a
CObjectDetectionIO
instance.- Returns:
classification results
- Return type:
- get_object_sub_image((CClassificationTask)self, (CGraphicsItem)item) object : ¶
Get ROI image for the given graphics item. We use the bounding rect property of
CGraphicsItem
to compute ROI. Input graphics items can be retrieved withget_input_objects()
. Classification can then be computed on the ROI to get individual object class.Args:graphics item (
CGraphicsItem
based object)- Returns:
ROI image
- Return type:
2D Numpy array
- get_image_with_graphics((CClassificationTask)self) object : ¶
Get visualization image where all extracted information are embedded (graphics items).
- Returns:
visualization image
- Return type:
2D Numpy array
- get_whole_image_results((CClassificationTask)self) object : ¶
Get classification results when applied on whole image (no input graphics items given). It gives a sorted list of tuple storing class name and confidence.
- Returns:
classification results
- Return type:
list of tuples (name, confidence)
- is_whole_image_classification((CClassificationTask)self) bool : ¶
Check whether input graphics items are given for individual classification.
- Returns:
True if no input graphics items are given (whole image classification), False otherwise
- Return type:
bool
- read_class_names((CClassificationTask)self, (str)path) None : ¶
Populate class names from the given text file (one line per class).
- Parameters:
path (str) – path to class names definition file
- set_colors((CClassificationTask)self, (object)colors) None : ¶
Set colors associated with class names. The given list must have the same size as names list. If not provided, random colors are generated while populating the name list (
read_class_names()
).- Parameters:
list (colors (list of) – r, g, b integer values in range [0, 255])
- set_names((CClassificationTask)self, (object)names) None : ¶
Set class names. The function generate associated random colors if none is defined.
- Parameters:
names (list of str)
- set_whole_image_results((CClassificationTask)self, (object)names, (object)confidences) None : ¶
Set whole image classification results.
- Parameters:
names (str list) – sorted list with respect to confidence score
confidences (str list) – sorted list (descending)
- emit_add_sub_progress_steps((CClassificationTask)self, (int)count) None : ¶
- emit_graphics_context_changed((CClassificationTask)self) None : ¶
- emit_output_changed((CClassificationTask)self) None : ¶
- emit_step_progress((CClassificationTask)self) None : ¶
See
emit_step_progress()
.
- end_task_run((CClassificationTask)self) None : ¶
See
end_task_run()
.end_task_run( (CClassificationTask)self) -> None